GATA-4 promotes the differentiation of P19 cells into cardiac myocytes.

نویسندگان

  • De-Liang Hu
  • Fu-Kun Chen
  • Yao-Qiu Liu
  • Yan-Hui Sheng
  • Rong Yang
  • Xiang-Qing Kong
  • Ke-Jiang Cao
  • Hai-Tao Gu
  • Ling-Mei Qian
چکیده

The aim of this study was to investigate the effects of GATA-4 on the differentiation of P19 cells into cardiomyocytes and to examine the relationship between GATA-4 and cardiomyocytes. We constructed vectors to overexpress and silence GATA-4. These vectors, as well as empty ones were transfected into P19 cells. Subsequently, reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis were performed. The morphology of P19 cells during differentiation was observed using an inverted microscope. Total RNA was extracted from P19 cells. We used real-time PCR to evaluate the expression levels of 6 genes: GATA-4, GATA-6, transthyretin (TTR), alpha-fetoprotein (AFP), Nkx2.5, and alpha-myosin heavy chain (alpha-MHC). The gene expression pattern of these 6 genes is graphically shown for each group. The GATA-4 mRNA level in cells overexpressing GATA-4 was notably higher than that in the controls, whereas the levels in the controls were notably higher than those in the GATA-4-silenced P19 cells. The cell lines overexpressing GATA-4 expressed higher levels of Nkx2.5 and alpha-MHC than the controls. However, the controls expressed higher levels of AFP, GATA-6 and TTR than the cells overexpressing GATA-4. The RNAi group expressed lower levels of TTR, Nkx2.5, and alpha-MHC than the controls, but there were no differences in the RNAi group and the controls with regard to the expression levels of AFP and GATA-6. The gene expression pattern in the cells overexpressing GATA-4 was biased toward the Nkx2.5 and alpha-MHC. On the other hand, the gene expression pattern in GATA-4-silenced cells and the controls was biased toward the TTR and AFP. The overexpression of GATA-4 enhances the differentiation of P19 cells into cardiac myocytes, whereas its down-regulation suppresses this trend.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor.

GATA-4 is a cardiac-specific member of the GATA family of zinc finger transcription factors. During embryogenesis, GATA-4 expression is detected very early in the cardiogenic area and persists later in the developing heart. Studies have shown that GATA-4 is a potent transcriptional activator of several cardiac muscle-specific genes and a key regulator of the cardiomyocyte gene program. Consiste...

متن کامل

Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation.

Commitment of mesodermal cells to the cardiac lineage is a very early event that occurs during gastrulation, and differentiation of cardiac muscle cells begins in the presomite stage prior to formation of the beating heart tube. However, the molecular events, including gene products that are required for differentiation of cardiac muscle cells, remain essentially unknown. GATA-4 is a recently c...

متن کامل

Differentiation of P19 Carcinoma Cell Line into Cardiomyocytes by Oxytocin Hormone

Purpose: The Present study was designed to investigate the OT effects on differentiation of P19 carcinoma cell line into cardiomyocytes. Materials and Methods: P19 carcinoma cell line were cultivated in hanging drops for 2 days to form aggregates termed embryoid bodies (EBs) and in suspension for 5 days. The EBs was treated with oxytocin hormone and DMSO. The EBs were then plated onto gelatin-...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the Notch signaling pathway

Our previous study reported that microRNA-375 (miR-375) is significantly upregulated in ventricular septal myocardial tissues from 22‑week‑old fetuses with ventricular septal defect as compared with normal controls. In the present study, the specific effects of miR‑375 on P19 cell differentiation into cardiomyocyte‑like cells were investigated. Stable P19 cell lines overexpressing miR‑375 or co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 26 3  شماره 

صفحات  -

تاریخ انتشار 2010